
Twin Cities

ANSYS® User Meeting
October 26th 2022

Workbench Scripting

2
ANSYS User Meeting

Intro to Epsilon

• Epsilon FEA provides engineering analysis

– Began in 2008 in Minneapolis

• Making Simulation Accurate
– In-depth knowledge of the tools

• ANSYS® Suite of Multi-Physics software

– Experience with industry successes/failures
• Aerospace, Rotating Machinery, Electronics, Manufacturing, Packaging, etc.

• Making Simulation Affordable
– We use specialized experienced engineers

– Detailed statements of work, scope and budget tracking

– Automation (APDL, ACT, Journaling, Scripting)

– NTE / Fixed-Price and with Low hourly rates

3
ANSYS User Meeting

Epsilon’s Customers

• Our customers need added expertise or load-leveling with:
– Analyst is a team-member, open communication not a black-box

• Interface with same Epsilon analyst to leverage past experiences

– Any new FEA methods / lessons learned are well communicated

– Schedule/budget fidelity with frequent status updates

• Our customers benefit from external expertise
– We infuse up-to-date FEA methods/tools

– We share our knowledge, files, and lessons learned!

– We help with tool selection, infrastructure advice

CFD, Design, Fatigue / Crack propagation, Dynamics / Vibration /
Shock, Acoustics, Thermal, Optimization, Scripting / Automation
LS-Dyna / Explicit, and more…

4
ANSYS User Meeting

Neil Dencklau - About Me

● 8 years of ANSYS Mechanical experience
○ Primarily fatigue assessment on large weldments
○ Wrote my first ANSYS script using the JScript interface

to generate a Mechanical model from Excel
○ Started using ANSYS python when ACT console was

introduced
● 6 years of general Python experience

○ Mostly in data analysis, image processing, and machine
learning

5
ANSYS User Meeting

Agenda

1) What is Python?
2) Getting into the interface
3) Simple script

a) Create a load and result.
b) Export reaction force and screenshot

4) Advanced script
a) Find all nodes that have stress above a given level and add their

elements to a named selection

5) Learning Resources
a) python.org
b) ANSYS example scripts
c) Copies of these and other scripts can be found at

https://github.com/denck007/ANSYS-Scripts

https://github.com/denck007/ANSYS-Scripts

6
ANSYS User Meeting

Python

• Interpreted, object oriented, dynamically typed language
– Does not have a compile step, just hit run

– Do not have to declare types for variables, they are dynamic

– Everything is an object

– Significant whitespace, no ‘;’ or ‘{}’ are needed like in most other
languages. A loop or if ends at the end of it’s indented block.

• Python has many implementations

– Most common is called ‘cpython’ and is what you get at python.org
or from Anaconda

– ANSYS uses version implemented on the .NET framework called
IronPython

7
ANSYS User Meeting

Python vs APDL (In Mechanical)

● Great at interacting with the
underlying data

● Called from ‘Command’
object in the tree to
manipulate the underlying
FE model

● Very fast math libraries

● Easy to automate GUI
workflow in Mechanical

● Easy to interact with CLR
programs like Word, Excel,
Powerpoint

● Uses the .NET Math libraries
(fast, but not Fortran fast)

● Can be invoked and used
anywhere and anytime

APDL Python

8
ANSYS User Meeting

Scripting Window

9
ANSYS User Meeting

Scripting Window Overview

Editor Window (left to right)

● Scripting window
● New blank script (clears the script window)
● Save script to disk
● Load script from disk
● Replay recording
● Start/Stop recording

○ Available if ‘Journaling’ is turned on
● Save/Load snippet

○ Snippets are scripts stored in App Data
● Save script to be button in UI

Shell Window (left to right)

● Shell/Terminal
● Clear shell
● Insert various helpful snippets

10
ANSYS User Meeting

Journaling - Optional

• Workbench -> Tools -> Options -> Mechanical -> Journaling
• Beta features must be on and the options menu reopened to set this
• Workbench must be restarted after change.
• Every command executed in the UI has the corresponding python

command saved.
• Will significantly slow down Mechanical when turned on

11
ANSYS User Meeting

Example - Export Reaction Forces

● Motivation: Monitoring reaction forces is a simple way to
check that the model is behaving as expected.

● Current Workflow: Select each force probe, select all time
steps in result, copy and paste into spreadsheet
○ Pros:

■ 1 object in tree for each boundary condition (all timesteps are in tabular data)

○ Cons:
■ Manual copy-paste into spreadsheet, repetitive, easy to mix up order
■ Tedious, takes 5-10 seconds per result

● Proposed Workflow: Script that exports all probes from all analyses into
csv
○ Pros:

■ Executes the exact same every time
■ Takes a fraction of a second to run

○ Cons:
■ Need a probe for each time step for each boundary condition

12
ANSYS User Meeting

Example - Export Reaction
Forces

Create the header for the output file

output_data = "Analysis Name, Result Name, Result Time, Unit,X Axis, Y Axis, Z Axis\n"

for analysis in DataModel.AnalysisList: # go over every analysis in the tree

for step in analysis.StepsEndTime:# go over every time step in the analysis

t = Quantity("{} [sec]".format(step))

for result in analysis.Solution.Children: # Search the results for reactions matching the time step

Check to see if the result is a reaction force probe

The 'not' keyword is a boolean inversion

The 'continue' keyword skips any following code and goes to the next iteration of the loop

Done this way to avoid a bunch of nested if statements

if not result.GetType().Equals(Ansys.ACT.Automation.Mechanical.Results.ProbeResults.ForceReaction):

continue

Need to handle case where DisplayTime is last. To get the 'Last' a value of '0' is set as the

display time. Check for this and set the correct time.

result_time = result.DisplayTime

if result.DisplayTime.Equals(Quantity("0 [sec]")):

Get the last time and set the result_time

last_time = analysis.StepsEndTime[analysis.StepsEndTime.Count-1]

result_time = Quantity("{} [sec]".format(last_time))

if result_time.Equals(t):

msg = Ansys.Mechanical.Application.Message("Exporting reaction {} for time {} in analysis

{}".format(result.Name,result_time,analysis.Name),MessageSeverityType.Info)

ExtAPI.Application.Messages.Add(msg)

#Results are type Quantity which will print out with the unit which we do not want

x,unit = result.XAxis.ToString().split(" ") # split at a space, returns number and unit

y = result.YAxis.ToString().split(" ")[0] # split at a space, keep just the first part which is the number

z = result.ZAxis.ToString().split(" ")[0] # split at a space, keep just the first part which is the number

output_data += "{},{},{},{},{},{},{}\n".format(analysis.Name,result.Name,result_time,unit,x,y,z)

Open the file in write mode ('w' is write, 'r' is read , 'a'is append)

keywork with is a context manager. It will automatically close the file at the end of the indented block

with open("C:\\temp\\forces.csv",'w') as fp:

fp.write(output_data)

14
ANSYS User Meeting

Example - Export Reaction
Force

Create the header for the output file

output_data = "Analysis Name, Result Name, Result Time, Unit,X Axis, Y Axis, Z Axis\n"

for analysis in DataModel.AnalysisList: # go over every analysis in the tree

for step in analysis.StepsEndTime:# go over every time step in the analysis

t = Quantity("{} [sec]".format(step))

16
ANSYS User Meeting

Example - Export Reaction
Force

for result in analysis.Solution.Children: # Search the results for reactions matching the time step

Check to see if the result is a reaction force probe

The 'not' keyword is a boolean inversion

The 'continue' keyword skips any following code and goes to the next iteration of the loop

Done this way to avoid a bunch of nested if statements

if not result.GetType().Equals(Ansys.ACT.Automation.Mechanical.Results.ProbeResults.ForceReaction):

continue

17
ANSYS User Meeting

Example - Export Reaction Force

Need to handle case where DisplayTime is last. To get the 'Last' a value of '0' is set as the

display time. Check for this and set the correct time.

result_time = result.DisplayTime

if result.DisplayTime.Equals(Quantity("0 [sec]")):

Get the last time and set the result_time

last_time = analysis.StepsEndTime[analysis.StepsEndTime.Count-1]

result_time = Quantity("{} [sec]".format(last_time))

● By default, Display Time is set to ‘End Time’, which is stored
as ‘0’. If Display Time is set to ‘0 [sec]’ know we want the
last time step

● Do a check the time to make sure we export in a specific
order

19
ANSYS User Meeting

Example - Export Reaction
Force

if result_time.Equals(t):

msg = Ansys.Mechanical.Application.Message("Exporting reaction {} for time {} in analysis

{}".format(result.Name,result_time,analysis.Name),MessageSeverityType.Info)

ExtAPI.Application.Messages.Add(msg)

#Results are type Quantity which will print out with the unit which we do not want

x,unit = result.XAxis.ToString().split(" ") # split at a space, returns number and unit

y = result.YAxis.ToString().split(" ")[0] # split at a space, keep just the first part which is the number

z = result.ZAxis.ToString().split(" ")[0] # split at a space, keep just the first part which is the number

output_data += "{},{},{},{},{},{},{}\n".format(analysis.Name,result.Name,result_time,unit,x,y,z)

20
ANSYS User Meeting

Example - Export Reaction Force

Open the file in write mode ('w' is write, 'r' is read , 'a'is append)

keywork with is a context manager. It will automatically close the file at the end of the indented block

with open("C:\\temp\\forces.csv",'w') as fp:

fp.write(output_data)

● The with command starts a context manager block.

● Open takes in the file name and the mode to operate on, ‘w’rite
(overwrites), ‘r’ead, ‘a’ppend. Additional options exist for binary files.

● Resulting file in Excel (no formatting applied):
○ Note that the Mechanical GUI gives 5 significant figures, this gives

access to the unformatted data. This can be useful in cases like
finding gaps between points.

21
ANSYS User Meeting

Example - Export Reaction Forces -
Version 2

Does the same thing as v1 but does it without
needing to have the result object

22
ANSYS User Meeting

Example - Export Reaction
Forces - Version 2

def get_nodes_in_supports(analysis, support_types):

"""

Given an analysis object and the types of supports to export results for

Create a dictionary mapping the support name to the node ids in the support

"""

nodes = {}

meshObj = analysis.MeshData

for support_type in support_types:

for child in analysis.GetChildren(support_type, True):

nodes[child.Name] = []

for location_id in child.Location.Ids:

nodes[child.Name].extend(meshObj.MeshRegionById(location_id).NodeIds)

return nodes

def read_results_for_analysis(analysis, nodes):

"""

Given an analysis and a dictionary of {<support name>: <nodes in support>}

Create a list of results for each support at each time step

"""

results = []

for support_name, node_ids in nodes.items():

with analysis.GetResultsData() as reader:

times = reader.ListTimeFreq # [1, 2, 3]

for idx in range(reader.ResultSetCount):

reader.CurrentResultSet = idx+1 # ResultSet is indexed starting at 1, not 0

force = reader.GetResult("F")

result = {

"analysis_name": analysis.Name,

"support_name": support_name,

"time": times[idx],

"unit": {},

"quantity_type": {},

"data": {},

}

for component in force.Components:

result["unit"][component] = force.GetComponentInfo(component).Unit

result["quantity_type"][component] =

force.GetComponentInfo(component).QuantityName

force.SelectComponents([component])

result["data"][component] = sum(force.GetNodeValues(node_ids))

results.append(result)

return results

def get_unique_keys(data, key):

"""

Given a list of dictionaries data with format:

[

{<key>: {"X": 0, "Y": 323, "Z": 43, "ASDF": -1}},

{<key>: {"X": 0, "Y": 323, "Z": 43, "QWE}},

]

return: list of unique keys in 'key': ["ASDF", "QWE", "X", "Y", "Z"]

"""

keys = set()

for row in data:

keys.update(row[key].keys())

return sorted(list(keys))

def get_output_string(results):

"""

Convert the list of results to a csv style string

which each component fully listed

"""

components = get_unique_keys(results, "data")

output = "Analysis Name,Support Name,Time," + ",".join(["Result {}".format(c) for c in

components]) + "," + ",".join(["Unit {}".format(c) for c in components]) + "," + ",".join(["Quantity

{}".format(c) for c in components]) +"\n"

for result in results:

line = [

result["analysis_name"],

result["support_name"],

"{}".format(result["time"])

]

line.extend(["{}".format(result["data"][c]) for c in components])

line.extend(["{}".format(result["unit"][c]) for c in components])

line.extend(["{}".format(result["quantity_type"][c]) for c in components])

output += ",".join(line)

output += "\n"

return output

support_types = [DataModelObjectCategory.FixedSupport,

DataModelObjectCategory.Displacement, DataModelObjectCategory.RemoteDisplacement]

results = []

for analysis in ExtAPI.DataModel.AnalysisList:

nodes = get_nodes_in_supports(analysis, support_types)

results.extend(read_results_for_analysis(analysis, nodes))

output = get_output_string(results)

with open("C:\\temp\\forces.csv",'w') as fp:

fp.write(output)

23
ANSYS User Meeting

Example - High Stress Elements

● Motivation: Review all regions with high stress elements

● Current Workflow: Can use new ‘Create Local Probes’ feature.
Otherwise must do via manual inspection
○ Pros:

■ Manual inspection leads to familiarity with model

○ Cons:
■ Tedious
■ Time consuming
■ Hard to track over time, compounded if there are multiple regions

● Proposed Workflow: Script that creates named selection of all nodes
over a specified stress, then groups them into connected regions
○ Pros:

■ Creates a list of regions to inspect
■ All nodes with a high stress are identified.

○ Cons:
■ None

24
ANSYS User Meeting

Desired Output High Stress
Elements

25
ANSYS User Meeting

High Stress Elements - Algorithm

● Search over all nodes in the model for stresses
over the given limit

● Cluster nodes by checking if any nodes on an
adjacent element are over the stress limit
○ This is done by finding ‘connected components’ using

‘breadth first search’

● Create a named selection for each of the clusters

26
ANSYS User Meeting

High Stress Elements

Set the stress limit, All elements with nodal stresses over this value will be added to the named selection

stressLimit = Quantity("4000. [psi]") # can use units of MPa, Pa, psi

Get some of the basic objects needed to perform the work.

sm = ExtAPI.SelectionManager

analysis = DataModel.AnalysisList[0] # This is the first analysis, change the index to run on others

meshObj = analysis.MeshData

First find the first vonMises stress in the analysis

If it does not exist throw an error

seqv = None

for child in analysis.Solution.Children:

if child.GetType().Equals(Ansys.ACT.Automation.Mechanical.Results.StressResults.EquivalentStress):

seqv = child

if seqv is None:

msg = Ansys.Mechanical.Application.Message("Did not find a Equivalent Stress result in for analysis {}".format(analysis.Name),MessageSeverityType.Error)

ExtAPI.Application.Messages.Add(msg)

For some reason raise does not work with buttons, but does in console.

But it still fails, just in a very unclear way.....

raise Exception("Did not find a Equivalent Stress result in for analysis {}".format(analysis.Name))

Next get a listing of the node ids and their corresponding stress value

Note that the PlotData property does not exist before ANSYS 2020R1

nodeIdsInResult = seqv.PlotData.Values[1]

stressAtNodes = seqv.PlotData.Values[2]

stressUnit = seqv.PlotData.Dependents.Values[0].Unit

Go over every node and see if it exceeds the stressLimit, and add them to a list

nodesHighStress = []

for node,stress in zip(nodeIdsInResult,stressAtNodes):

if Quantity("{} [{}]".format(stress,stressUnit)) > stressLimit:

nodesHighStress.append(node)

Convert the node ids from above to their corresponding element ids

elementsHighStress = meshObj.ElementIdsFromNodeIds(nodesHighStress)

The SelectionManager allows you to do the equivalent of manually selecting

items in the graphics. It can be scoped to any geometry feature type, or mesh feature type

First create a SelectionInfo object with all the data that you want to select, then actually

select the data. This allows for doing many modification to the selection without needing

to update the graphics which will slow things down

sm.ClearSelection()

selectionInfo = sm.CreateSelectionInfo(SelectionTypeEnum.MeshElements)

selectionInfo.Ids = elementsHighStress

sm.NewSelection(selectionInfo)

Create the named selection. Just like when using Mechanical normally, anything that is selected

when a named selection is created is added to the named selection

ns = DataModel.Project.Model.AddNamedSelection()

ns.Name = "Elements with nodes over {}".format(stressLimit.ToString())

27
ANSYS User Meeting

High Stress Elements Continued

This section using Breadth First Search to find connected components

The underlying theory is beyond the scope of this example.

from collections import deque

def getNeighborElements(element):

''''

Return the element ids for elements that are adjacent to the element

'''

nodes = meshObj.NodeIdsFromElementIds([element])

elements = meshObj.ElementIdsFromNodeIds(nodes)

list(set()) gets a list of unique values from a list

elements = list(set(elements))

return elements

Dictionary to allow fast lookup of elements that have high stress

This also allows mapping of element id to grouping id

Initialize the tracker with -1 for each element, meaning the element has not been explored

this is an implementation detail and there are many different ways to approach this

elementTracker = {}

for element in elementsHighStress:

elementTracker[element] = -1

groups = [] # The element Ids

Now use breadth first search to find groups of high stress elements

for element in elementsHighStress:

if (element in elementTracker) and (elementTracker[element] == -1):

Assign the element to the latest group.

The new group is not added to the groups list till all items in the group

are found, so the current group is the length of groups, with starting index == 0

elementTracker[element] = len(groups)

currentGroup = [element]

q = deque()

q.append(element)

while len(q) > 0:

elem = q.pop()

Add all neighboring elements that have not been explored

for e in getNeighborElements(elem):

if (e in elementTracker) and (elementTracker[e] == -1):

q.append(e)

elementTracker[e] = len(groups)

currentGroup.append(e)

all the elements in the group have been added to currentGroup, so add

the current group to the list of groups

groups.append(currentGroup)

Creating named selections behaves the same way as in the UI. Whatever is selected when the NS is created is in the NS

Of course the values can be edited later if needed

for idx, group in enumerate(groups):

sm.ClearSelection()

selectionInfo = sm.CreateSelectionInfo(SelectionTypeEnum.MeshElements)

selectionInfo.Ids = group

sm.NewSelection(selectionInfo)

ns = DataModel.Project.Model.AddNamedSelection()

ns.Name = "Elements with nodes over {} in group {}".format(stressLimit.ToString(),idx)

28
ANSYS User Meeting

Example - High Stress Elements

Set the stress limit, All elements with nodal stresses over this value will be added to the named selection

stressLimit = Quantity("4000. [psi]") # can use units of MPa, Pa, psi

Get some of the basic objects needed to perform the work.

sm = ExtAPI.SelectionManager

analysis = DataModel.AnalysisList[0] # This is the first analysis, change the index to run on others

meshObj = analysis.MeshData

● Create a Quantity object with our desired threshold
○ Useful as it handles all of the units for us (ie can input

MPa and have psi be the current units)

● Set shorthand for some of the items we will be using
○ sm is the interface to select objects (like bodies, edges,

nodes, elements, etc.)
○ Set the analysis we are looking at
○ Get the object that holds all the mesh data

29
ANSYS User Meeting

Example - High Stress Elements

First find the first vonMises stress in the analysis

If it does not exist throw an error

seqv = None

for child in analysis.Solution.Children:

if child.GetType().Equals(Ansys.ACT.Automation.Mechanical.Results.StressResults.EquivalentStress):

seqv = child

if seqv is None:

msg = Ansys.Mechanical.Application.Message("Did not find a Equivalent Stress result in for analysis {}".format(analysis.Name),MessageSeverityType.Error)

ExtAPI.Application.Messages.Add(msg)

For some reason raise does not work with buttons, but does in console.

But it still fails, just in a very unclear way.....

raise Exception("Did not find a Equivalent Stress result in for analysis {}".format(analysis.Name))

● Search through the solution and find the
vonMises Stress result

● Throw an error if it is not found

30
ANSYS User Meeting

Example - High Stress Elements

Next get a listing of the node ids and their corresponding stress value

Note that the PlotData property does not exist before ANSYS 2020R1

nodeIdsInResult = seqv.PlotData.Values[1]

stressAtNodes = seqv.PlotData.Values[2]

stressUnit = seqv.PlotData.Dependents.Values[0].Unit

Go over every node and see if it exceeds the stressLimit, and add them to a list

nodesHighStress = []

for node,stress in zip(nodeIdsInResult,stressAtNodes):

if Quantity("{} [{}]".format(stress,stressUnit)) > stressLimit:

nodesHighStress.append(node)

● Iterate over every node in the solution and get a list of all the nodes
and stresses at the nodes
○ IMPORTANT: The data is EXACTLY what was requested in the solution. If the plot has

‘Display Option’ set to ‘Averaged’ (default) it is 1 value per node. If it is set to
‘Unaveraged’ there is a result per element node. In this model there are 3561 nodes
so 3561 items in the ‘Averaged’ result, but 10380 values in the ‘Unaveraged’ result.

● Note that a Quantity object is created for every node and used in the
comparison. It would be faster (but less clear) to convert the threshold
stress to the PlotData stress units and do the comparison.

31
ANSYS User Meeting

Example - High Stress Elements

Convert the node ids from above to their corresponding element ids

elementsHighStress = meshObj.ElementIdsFromNodeIds(nodesHighStress)

● Use the meshObj (analysis.MeshData) to convert a listing of mesh
nodes to mesh elements

● Can be thought of as creating a named selection of nodesHighStress,
and converting it to Mesh Elements

32
ANSYS User Meeting

Example - High Stress Elements

The SelectionManager allows you to do the equivalent of manually selecting

items in the graphics. It can be scoped to any geometry feature type, or mesh feature type

First create a SelectionInfo object with all the data that you want to select, then actually

select the data. This allows for doing many modification to the selection without needing

to update the graphics which will slow things down

sm.ClearSelection()

selectionInfo = sm.CreateSelectionInfo(SelectionTypeEnum.MeshElements)

selectionInfo.Ids = elementsHighStress

sm.NewSelection(selectionInfo)

Create the named selection. Just like when using Mechanical normally, anything that is selected

when a named selection is created is added to the named selection

ns = DataModel.Project.Model.AddNamedSelection()

ns.Name = "Elements with nodes over {}".format(stressLimit.ToString())

● Create a new selection of elements

● Sets the ids in the selection to be
the elements

○ Note this same process works with all geometry types
○ Multiple ‘SelectionInfo’ objects can exist at the same time (and

can be added/subtracted to), but only 1 ‘SelctionInfo’ object
selected at once

○ Create the selection (set it to be selected in the GUI) with
‘NewSelection’

33
ANSYS User Meeting

Example - High Stress Elements

def getNeighborElements(element):

''''

Return the element ids for elements that are adjacent to the element

'''

nodes = meshObj.NodeIdsFromElementIds([element])

elements = meshObj.ElementIdsFromNodeIds(nodes)

list(set()) gets a list of unique values from a list

elements = list(set(elements))

return elements

● Create a function that takes in a single element, and returns a list of all adjacent
elements

● Equivalent to the following Named Selection:

34
ANSYS User Meeting

Example - High Stress Elements

elementTracker = {}

for element in elementsHighStress:

elementTracker[element] = -1

● Keep track of which elements to find connected components (aka
groups, clusters) by using a dictionary
o Elements that we are not interested in are not in the dictionary
o -1 means the element has not been assigned to a group
o All other values indicate the group number

● Dictionaries are very fast and efficient ways to store key, value pairs.
○ Keys are any immutable data type (tuple,integer, float, string’)
○ Values can be any python object (list, number, string, even another

dictionary)

35
ANSYS User Meeting

Example - High Stress Elements

groups = [] # The element Ids

for element in elementsHighStress:

if (element in elementTracker) and (elementTracker[element] == -1):

elementTracker[element] = len(groups)

currentGroup = [element]

q = deque()

q.append(element)

while len(q) > 0:

elem = q.pop()

for e in getNeighborElements(elem):

if (e in elementTracker) and (elementTracker[e] == -1):

q.append(e)

elementTracker[e] = len(groups)

currentGroup.append(e)

groups.append(currentGroup)

● Find ‘Connected Components of Graph using Breadth First Search’
○ Note this implementation is not the most efficient and may not scale well to a large

number of elements as it checks the same elements multiple times.

● A Queue is a data structure that can efficiently store, return, and insert a value and
maintain the order in which items are added. ‘pop()’ an item returns the most recently
added item

● This block of code adds an element to a queue, then adds it neighbors if they are a high
stress element. When no more neighboring elements are can be found that are high
stress, then it moves onto the next grouping of elements.

36
ANSYS User Meeting

Example - High Stress Elements

for idx, group in enumerate(groups):

sm.ClearSelection()

selectionInfo = sm.CreateSelectionInfo(SelectionTypeEnum.MeshElements)

selectionInfo.Ids = group

sm.NewSelection(selectionInfo)

ns = DataModel.Project.Model.AddNamedSelection()

ns.Name = "Elements with nodes over {} in group {}".format(stressLimit.ToString(),idx)

● Finally create a new named selection for each of the groups

37
ANSYS User Meeting

Closing Thoughts

• Scripting with python can drastically improve the
quality of work by removing some of the tedious
and error prone tasks we all do.

• The Python interface is improving every release

• We are here to help!

38
ANSYS User Meeting

Resources

● Mechanical API documentation
○ https://ansyshelp.ansys.com/account/secured?returnurl=/Views/Secured/corp/v201/en/act_script/act_mech_a

pis.html

● ANSYS scripting help
○ https://ansyshelp.ansys.com/account/secured?returnurl=/Views/Secured/corp/v201/en/act_script/act_script_i

ntro.html

● Extension Examples
○ https://catalog.ansys.com/Developers.cshtml
○ Download ‘Extension Examples <your version>’ More example scripts than what is in documentation.
○ Example ‘Mises’ is especially helpful for working with stress results

● Python
○ Note ANSYS Mechanical currently uses python 2.7 which is deprecated. Official tutorials:

https://docs.python.org/2.7/tutorial/

● Neil Dencklau’s Github
○ Has the scripts for this presentation and additional scripts showing other use cases
○ https://github.com/denck007/ANSYS-Scripts

https://ansyshelp.ansys.com/account/secured?returnurl=/Views/Secured/corp/v201/en/act_script/act_mech_apis.html
https://ansyshelp.ansys.com/account/secured?returnurl=/Views/Secured/corp/v201/en/act_script/act_script_intro.html
https://catalog.ansys.com/Developers.cshtml
https://docs.python.org/2.7/tutorial/

39
ANSYS User Meeting

Debug - Optional

• Workbench -> Tools -> Options -> Extensions -> Debug
• Loads ACT Debugger, Log file viewer, Reload Extensions
• Not going over building ACT extensions so the debugger and reload tool

are not used. Log file viewer can be useful in scripting.

40
ANSYS User Meeting

Data Structures in Mechanical

● Two types of data:
○ What is in the tree - Details, name, timestep,

stiffness behavior, etc
○ The underlying representation - BREP data for

geometry, nodes and elements, results, etc

● Everything that is in the ‘details’ of an item
in the tree is available

● Most of the underlying data directly
accessible (more with every release)

41
ANSYS User Meeting

Python

• Built on C language
• Highly extensible by writing extensions in C or C++
• Lots of libraries

– numpy for math
– matplotlib for high quality graphs
– scipy for more advanced math
– opencv for image processing
– tensorflow for machine learning
– django for web sites
– 220,000+ other packages available for free on pypi.org

• Has a ‘Global Interpreter Lock’ which makes multi-threading kind of
confusing

• Built using Common Runtime
Library in .NET

• Use the standard windows math
dll libraries that ANSYS is already
using

• Easy to call existing .NET libraries
• Easy to add a scripting interface

to .NET programs
• Most extensions from cPython

do not work
• Multi-threading/multi-processing

is easier

cPython IronPython

42
ANSYS User Meeting

Python

• Show previous line in the ANSYS console
– CTRL + UpArrow

• Formatting strings using the .format() method
– “{}”.format(“some string”) => “some string”
– “{}”.format(234.44) => “234.44”
– “{:.1f}”.format(234.44) => “234.4”
– “{:03d}”.format(43) => “043”

• Comments start with a #. Anything after the # will not be executed
• Multi-line comments are enclosed with triple single quotes

– ‘’’multi-line comment’’’
• Having print statements in the code for a button will cause the script to

crash. Instead use the following and view the results in the debug log.
– ExtAPI.Application.Messages.Add(Ansys.Mechanical.Application.Message("message

info",MessageSeverityType.Info)
– MessageSeverityType options are: .Info, .Warning, and .Error

Notes

43
ANSYS User Meeting

Basic Python - Loops

print("Range Function")

for ii in range(3):

print(ii)

print("Iterate over objects in list")

for item in ["item1","item2","item3"]:

print(item)

print("Break keyword")

for ii in range(3):

if ii == 1:

print("ii==1, breaking")

break

print(ii)

print("Continue keyword")

for ii in range(3):

if ii == 1:

print("ii==1, do not print value")

continue

print("While Loop")

ii = 0

while ii < 3:

print(ii)

ii += 1

Range Function

0

1

2

Iterate over objects in list

item1

item2

item3

Break keyword

0

ii==1, breaking

Continue keyword

0

ii==1, do not print value

2

While Loop

0

1

2

Inputs Outputs

44
ANSYS User Meeting

Basic Python - If

if True:

print("Item is True")

else:

print("Item is False")

if "nsy" in "ansys":

print("True")

x = 3

if x > 5:

print("{} Greater than 5".format(x))

elif x > 3:

print("{} Greater than 3".format(x))

elif x >= 3:

print("{} Greater than or equal to 3".format(x))

else:

print("Did not find match")

Item is True

True

3 Greater than or equal to 3

Inputs Outputs

45
ANSYS User Meeting

Input / Questions

… within Epsilon

